JOM 23393PC

Preliminary Communication

Hydride-phosphoniodithiocarboxylate/ phosphonium-betaine isomerism in Cy_3PCS_2 complexes of ruthenium

Andrew L. Hector and Anthony F. Hill

Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AY (UK)

(Received August 14, 1992)

Abstract

Reaction of Cy_3PCS_2 (Cy - cyclohexyl) with the hydrido complexes [RuClH(CA)(PPh_3)_3] (A = O, S), [RuH(CO)(NCMe)_2(PPh_3)_2]⁺, and [RuH(OClO_3)(CO)(CN¹Bu)(PPh_3)_2] leads to the complex cations [RuH(CA)(PPh_3)_2(η^2 -S₂CPCy₃)]⁺, [Ru(η^2 -S₂CHPCy₃)(CO) (PPh_3)_2]⁺, [RuH(η^1 -S₂CPCy₃)(CO)(CN¹Bu)(PPh_3)_2]⁺. The σ -vinyl complex [Ru(CH=CHC₆H₄Me-4)Cl(CO)(PPh_3)_2] reacts with Cy₃PCS₂ to give the cationic complex [Ru(CH=CHC₆H₄Me-4) (CO)(PPh_3)_2(η^2 -S₂CPCy₃)]⁺, but this complex is not formed by hydroruthenation of HC=CC₆H₄Me-4 by [RuH(CO)(PPh_3)_2(η^2 -S₂CPCy₃)]⁺. The inter-relationships between the above complexes are discussed.

The adducts formed between trialkylphosphines (PR_3) and carbon disulphide (S_2CPR_3) act as ligands to transition metals in a manner in some ways reminiscent of dialkyl dithiocarbamates, the predominant coordination mode being the formation of a MS₂C metallacycle (Scheme 1). The intriguing departure from this analogy comes from the possibility of P-C bond cleavage and/or the addition of nucleophiles to the carbon atom [1,2]. In particular the connection between dithioformate / phosphine (A, Scheme 1), phosphonium betaine [B, Scheme 1] and hydride / phosphoniodithiocarboxylate [C, Scheme 1] complexes raises the question of hydride and phosphine transfer to and from the metallacycle carbon. Singleton has shown that thermolysis of $[Ru(S_2CH)(PMe_2Ph)_4]^+$ leads to $[Ru(S_2CH PMe_{2}Ph)(PMe_{2}Ph)_{3}]^{+}$ and that replacement of the phosphine ligands by P(OMe), induces the phosphine to return to the metal centre with formation of [Ru- $(S_2CH)(PMe_2Ph)_{2}[P(OMe)_{3}]_{2}]^{+}$ [1], but there are no examples of cases in which the phosphonium betaine and phosphoniodithiocarboxylate isomers co-exist. We find that this situation arises in the reactions of C_3PCS_2 (Cy = cyclohexyl) with a variety of ruthenium hydride complexes featuring different electronic properties and coordinative saturation at the ruthenium centre.

The complex [RuClH(CO)(PPh₂)₂] reacts with Cy₃PCS₂ to give a mixture of products. ³¹P NMR and IR spectroscopy indicate that ca. 90% of the mixture consists of two compounds in a ratio of 1:3. A pure sample of these two complexes is obtained from the reaction of the salt [RuH(CO)(NCMe)₂(PPh₃)₂]ClO₄ [3] with S₂CPCy₃ ¹H, and ³¹P NMR data (Table 1) indicate that two isomers are present, which we formulate as $[RuH(CO)(PPh_3)_2(S_2CPCy_3)]^+$ (minor) and $[Ru(S_2CHPCy_3)(CO)(PPh_3)_2]^+$ (major). The most informative spectroscopic data are associated with the proton which is either bound to ruthenium [δ -9.94 ppm, J(PH) 23.5, 5.3 Hz] or to the dithiocarboxylic carbon [δ 5.94 ppm, J(PH) not resolved at 400 MHz]. The formation of the minor hydrido isomer has precedent in the reaction of the 16-electron complex [RuClH(CO)(PCy₃)₂] with Cy₃PCS₂ which provides $[RuH(CO)(PCy_3)_2(S_2CPCy_3)]^+$ [4]. It is not clear why replacement of PCy₃ by PPh₃ in the present case leads to a predominance of the betaine isomer. The implication that a less basic (or more π -acidic) phosphine disfavours the phosphoniodithiocarboxylate isomer is contradicted by the observation that Cy₃PCS₂ with [RuClH(CS)(PPh₃)₃] leads exclusively to the complex $[RuH(CS)(PPh_3)_2(S_2CPCy_3)]^+ [\delta -7.76, J(PH) = 23.5,$ 5.5 Hz], given that carbon monosulphide is recognised to be a stronger π -acid than carbon monoxide. In the bis(tricyclohexylphosphine) complex it is possible that steric factors come into play, and indeed such an argument has been used by Singleton [1]. The results obtained with $[RuClH(CS)(PPh_3)_3]$ clearly indicate that both electronic and steric factors play a role in this isomerism.

The phosphonium betaine isomer is formally coordinatively unsaturated and accordingly it seemed plausible that the addition of small ligands L (L = CO, CN^tBu) would trap the betaine isomer as [Ru(S₂CHP-Cy₃)(CO)(L)(PPh₃)₂]⁺. Treating the complex with either tert-butyl isonitrile or carbon monoxide did not lead to any reaction. An isomer of the desired complex was, however, formed by treatment of the σ -perchlo-

Correspondence to: Dr. A.F. Hill.

Scheme 1. Dialkyldithiocarbamate, phosphoniodithiocarboxylate, dithioformate and phosphonium betaine ligands.

TABLE 1. Spectroscopic data for the complexes ($L = S_2CPCy_3$; $L'' = PPh_3$; $R = C_6H_4Me-4$)

Compound	IR ^a ν (CO) $/\nu$ (CS)	NMR ^b ³¹ P (δ) [<i>J</i> (PP)] (Hz)	¹ Η (δ)
$\overline{[\text{RuH(CO)}(\eta^2-L)L_2'']^+}$	1935	50.1 (d)	-9.94 [dt, 0.24H, J(PH) 23.5 (RuP), 5.3 Hz (S ₂ CP)]
(colour unknown)	(1930)	29.9 (t), [5.0]	
$[\operatorname{Ru}(\operatorname{CO})(\eta^2 - \operatorname{HL})L_2'']^+$ (red)	1951	50.3 (s)	5.94 [dt °, 0.76H, RuS ₂ C <i>H</i> PCy ₃]
	(1961)	27.9 (s)	
$[RuH(\eta^{1}-L)(CN^{t}Bu)(CO)L_{2}'']^{+}$ (yellow)	1976	45.4 (s)	– 10.66 [dt, 1H, J(PH) 17.8 (RuP), 8.1 Hz (S ₂ CP)]
	(1992)	30.2 (s)	
$[RuH(\eta^2-L)(CS)L''_2]^+$ (orange)	1267	48.9 (d)	- 7.76 [dt, 1H, J(PH) 23.5 (RuP), 5.5 (S ₂ CP)]
	-	30.9 (t), [6.8]	
[Ru(CH _{α} =CH _{β} R)(CO)(η^2 -L)L'' ₂] ⁺ (solid: purple; CH ₂ Cl ₂ soln.: green)	1940	39.3 (d)	2.25 [s, 3H, $C_6H_4CH_3$], 5.42 [dt °, 1H, $J(H_aH_B)$ 16.8 Hz,
	(1947)	31.2 (t), [4.9]	RuCH=C H_{β}], 6.26, 6.87 [(AB) ₂ , 4H, J(AB) = 8.0 Hz, C ₆ H ₄ CH ₃], 7.66 [m ^b , 1H, RuC H_{α} =CH _β].

^a Nujol mulls, values in parentheses for CH₂Cl₂ solution. ^b From saturated solutions of the complex in CDCl₃ at ambient temperature. Chemical shifts are given relative to internal Me₄Si (0.00 ppm). ¹H Resonances due to PPh₃ and PCy₃ omitted. ^c J(PH) Not resolved at 400 MHz. ^d ν (CN) = 2156 (2144) cm⁻¹.

Scheme 2. Synthesis of phosphoniodithiocarboxylate complexes $(L = PPh_3; R = C_6H_4Me-4)$ (i) $[RuClH(CS)L_3]$; (ii) $[Ru(CH=CHR)(CO)-(NCMe)_2L_2]^+$ or $[RuCl(CH=CHR)(CO)L_2]$; (iii) $[RuH(OClO_3)(CO)(CN^{\dagger}Bu)L_2]$; (iv) $[RuClH(CO)L_3]$ or $[RuH(CO)(NCMe)_2L_2]^+$; (v) HC=CR; (vi) CN^{\dagger}Bu.

rato complex $[RuH(OClO_3)(CO)(CN^tBu)(PPh_3)_2][5^*]$ with Cy₃PCS₂. Spectroscopic data (Table 1) indicate that it is in fact a monodentate adduct of S₂CPCy₃, viz. $[RuH(CO)(CN^tBu)(PPh_3)_2(S_2CPCy_3)]^+$ [J(PH) 8.0, 16.7 Hz], and not $[Ru(S_2CHPCy_3)(CO)(CN^tBu) (PPh_3)_2]^+$ or the alternative iminoformyl isomer $[Ru(CH=N^tBu)(CO)(PPh_3)_2(S_2CPCy_3)]^+$ [6^{*}].

The possible application of $[RuH(CO)(PPh_3)_2(S_2 CPCy_3)]^+/[Ru(S_2CHPCy_3)(CO)(PPh_3)_2]^+$ to the hydroruthenation of alkynes was next investigated, and for conditions under which the complexes were stable there was no evidence for the hydroruthenation of 4-ethynyltoluene to give $[Ru(CH=CHC_6H_4Me-4)(S_2CPCy_3)(CO)(PPh_3)_2]^+$. This complex (and a range of analogues) were, however, prepared by addition of S_2CPCy_3 to the preformed σ -vinyl complex [Ru(CH=CHC_6H_4Me-4)CI(CO)(PPh_3)_2][7*] (Scheme 2).

Note added in proof: Since the submission of this manuscript, we have obtained $[Ru(S_2CHPCy_3)(CO)-(PPh_3)_2]BF_4$ by fractional crystallisation and crystallographically verified the formulation [8].

Acknowledgement

We are grateful to Johnson Matthey Chemicals Ltd for a generous loan of ruthenium salts.

References and notes

- 1 T. V. Ashworth, E. Singleton and M. Laing, J. Chem. Soc., Chem. Commun., (1976) 875.
- 2 C. Bianchini, A. Meli and A. Orlandini, *Inorg. Chem.*, 21 (1982) 4166.
- 3 B. E. Cavit, K. R. Grundy and W. R. Roper, J. Chem. Soc., Chem. Commun., (1972) 60.
- 4 T. R. Gaffney and J. A. Ibers, Inorg. Chem., 21 (1982) 2062.
- 5 Prepared as described for $[RuH(OClO_3)(CO)(CNC_6H_4Me-4)(PPh_3)_2]$ by successive treatment of $[RuClH(CO)(PPh_3)_3]$ with tert-butyl isonitrile and silver perchlorate: D. F. Christian and W. R. Roper, J. Chem. Soc., Chem. Commun., (1971) 1271.
- 6 Roper has reported the formation of [Ru(CH=NC₆H₄Me-4)(O₂C-CH₃)(CO)(PPh₃)₂] by addition of acetate to [RuHI(CO)(CNC₆H₄ Me-4)(PPh₃)₂]: D. F. Christian and W. R. Roper, J. Organomet. Chem., 80 (1974) C35; D. F. Christian, G. R. Clark, W. R. Roper, J. M. Waters and K. R. Whittle, J. Chem. Soc., Chem. Commun., (1972) 458.
- 7 [Ru(CH=CHC₆H₄Me-4)Cl(CO)(PPh₃)₂] was prepared as described by Santos et al. for the corresponding trans-β-styryl derivative [Ru(CH=CHPh)Cl(CO)(PPh₃)₂]: M. R. Torres, A. Vegas, A. Santos and J. Ros, J. Organomet. Chem., 309 (1986) 169.
- 8 A. M. Z. Slawin and D. J. Williams, unpublished results.

^{*} Reference number with asterisk indicates a note in the list of references.